63. 不同路径 II
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
网格中的障碍物和空位置分别用 1 和 0 来表示。
说明:m 和 n 的值均不超过 100。
示例 1:
1 | 输入: |
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/unique-paths-ii
Solution
与上一题差不多,不同的是增加了障碍物,只需要将障碍物处设置为 0 即可;
递推式为:
$$F(m,n)=\begin{cases}
0,\quad obstacleGrid[m][n] = 1\
F(m,n-1),\quad m=1 and obstacleGrid[m][n] = 0\
F(m-1,n),\quad n=1 and obstacleGrid[m][n] = 0\
F(m-1,n) + F(m,n-1), \quad m>1 and n > 1
\end{cases}$$
Code
1 | class Solution { |
- 本文标题:63. 不同路径 II
- 本文作者:codeflysafe
- 创建时间:2020-03-17 15:27:25
- 本文链接:https://codeflysafe.github.io/2020/03/17/2020-03-17-63.-不同路径-II/
- 版权声明:本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!
评论